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Abstract
• Numerical simulation of multidimensional particle transport

problems falls into the category of the most complex and labor-
intensive application problems.

• The paper reviews the numerical simulation methods used at
RFNC-VNIIEF for various categories of multidimensional
transport problems (linear and nonlinear, time-dependent and
time- independent, etc.). It briefly describes, in particular,
some specific features of application of the methods, such as
Monte Carlo method and the method of angular coefficients
(view factors), and gives a detailed analysis of deterministic
grid methods.  Special emphasis is put on the issues
concerning nonlinear multidimensional time-dependent linked
problems, where many other physical processes are
considered along with the transport process.
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Monte Carlo method for numerical solution of transport problems
(Zhitnik A.K. et al, 1999), (Kochubey Yu.B. et al, 2000),

(Donskoy E.N. et al, 1993)

Solvable problems:

• Linear particle transport problems (transport of neutrons and
photons, calculation of critical parameters Keff and λ,

calculations of protection against gamma-neutron radiation,
calculation of nuclear radiation safety of containers for
transportation and storage of spent nuclear fuel, etc.).

• Transport of charged particles

• Solution of linked problems with consideration of other
physical processes along with transport processes.
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Specific features of numerical methods and
algorithms in use

      To provide simulation of physical processes to a rather high accuracy and
high efficiency of computations, the following methods have been
implemented in Monte Carlo codes :

• Method of maximum cross-sections for simulation of trajectories that ensures
the same speedup both with spectral constants and group constants.

• Consideration of thermal motions of medium nuclei during simulation of
trajectories on cold cross-sections of a material (Ivanov N.V. et al, 2003).  This
allows avoiding computations of cross-sections at given temperatures.

• Method of accidental collisions  during simulation of electron trajectories, in
which Fokker-Planck approximation is used to describe collisions with small
transfers of energy and momentum (Donskoy E.N. et al, 1993).

• The developed model for accounting generation of annihilation and
bremsstrahlung photons that allows sufficiently accurate description of their
distribution without simulation of electron and positron trajectories.
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•• The code has been parallelized based on MPI libraryThe code has been parallelized based on MPI library
of of interprocessorinterprocessor communications. communications.  The algorithmsThe algorithms
in use demonstrate a high parallelization efficiencyin use demonstrate a high parallelization efficiency
on a large enough number of processors.on a large enough number of processors.

•• Another area of Monte Carlo method application toAnother area of Monte Carlo method application to
transport problems is the development oftransport problems is the development of
simulation algorithms for grid geometries. Thesimulation algorithms for grid geometries. The
developed algorithms allow using arbitrarilydeveloped algorithms allow using arbitrarily
structured grid geometries and the simulationstructured grid geometries and the simulation
efficiency is actually independent of cell sizes of theefficiency is actually independent of cell sizes of the
grid in use.grid in use.
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Computations of radiation transport in vacuum using the method of view factors
 (Babayev Yu.N. et al, 1978), (Zel’dovich Ya.B. et al, 1966), (Dementiev

Yu.A.  et al, 1984), (Babayev Yu.N. et al, 1995), (Bazin A.A et al., 1998),
(Dementiev Yu.A. et al, 1983)

          Solvable problems:

• Engineering heat problems.
• Linked problems of X-ray transport in optically

transparent regions with taking account of a
number of other physical processes (laser
thermonuclear fusion problems, etc.)

• In such regions, the integral radiation transport
equation obtained in assumption of no
radiation/medium interactions is solved.



7 of 61

Equation of radiation
transport in vacuum
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Numerical
approximation
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Determination of view
factor
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“Hemisphere” method
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“Hemicube” method
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X-Ray radiation propagation
through the gap in laser facility

«Iskra-5»

Diagram of a target

1 - holder, 2 – laser beams,
3 – “illuminator”,
4 – external cylinder (Au),
5 – internal cylinder (Au),
6 - gap, 7 – diagnostic slot

X-Ray photograph
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Diagram of a target

1 - holder, 2 – laser beams,
3 – “illuminator”,
4 – X-Ray propagation channel,
5 – obstacle (Au),
6 – diagnostic slot

X-Ray photograph

Relative decrease of X-ray radiation flow along the 
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X-Ray radiation flow around the
sphere in the channel
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Numerical solution of
multidimensional transport

problems using the methods of
finite differences and finite elements
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Fast charged particle
transportLaser energy

transport, absorption
and dissipation

Ionization kinetics

Spectral x-ray
radiation transport and

interaction  with
medium

Neutron transport and
neutron-nucleus

interaction kinetics

Energy transport by
electrons and ions in

non-equilibrium
medium

Transport and
absorption of heavy

ion energy

Hydrodynamics

Inter process data
exchange

Accountable physical
processes
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2D and 3D neutron transport problems
in group approximation

The system of group neutron transport equations in cylindrical coordinate
system:
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2D time-dependent problems of radiation and
material energy transport in group approximation

                 

 

The system of group radiation transport equations written in cylindrical coordinate system:

where the transport operator is

Energy equation:
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5-LC,19-23 June 2005,
Vienna Austria

Some assumptions underlying the numerical methods
used to solve transport problems:

1. The transport equation is approximated in time
using the implicit two-point difference scheme.

2. The transport equation approximation in space
is constructed using non-orthogonal spatial
grids, namely:

• Regular non-orthogonal grids of convex
quadrangles;

• Irregular non-orthogonal grids  of arbitrarily
shaped convex polygons.
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5-LC,19-23 June 2005,
Vienna Austria

Fig.1. A structured quadrangular (regular) grid
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Using irregular non-orthogonal
grids of arbitrary-shape
convex polygons
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5-LC,19-23 June 2005,
Vienna Austria

• the extended-template scheme (Pleteneva N.P. et al,
1989), (Moskvin A.N. et al, 2005);

•  the scheme with introduction of closing relations
based on moment equations;

• the scheme based on the use of adaptively refined
grids  in phase space (Shagaliev R.M, 2004),
(Shagaliev R.M. et al, 2004);

• schemes of the discrete-ordinates method type are
used for the transport equation discretization in
angular variables.

The grids mentioned above were used to construct a
number of conservative finite difference schemes:
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5-LC,19-23 June 2005,
Vienna Austria

The schemes above have the following common features: with

the use of non-orthogonal grids they preserve important

features of DSn – schemes, such as the transport equation

approximation within a single phase space cell and,

consequently, a possibility to resolve systems of grid

equations using sweep (point-to-point) method of

computations (Troshchiyev V.E., 1976).

Nevertheless, they differ from each other in the accuracy of

approximation using essentially non-orthogonal grids, in

monotone behavior of the grid solution and some other

features.
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5-LC,19-23 June 2005,
Vienna Austria

4. 4. The numerical solution to the system of gridThe numerical solution to the system of grid

transport equations with the known right-handtransport equations with the known right-hand

side can be found using the sweep  method (point-side can be found using the sweep  method (point-

to-points computations) (to-points computations) (TroshchiyevTroshchiyev V.E, 1976) V.E, 1976)

and  modification to this method oriented to aand  modification to this method oriented to a

multiple-group case (multiple-group case (FedotovaFedotova L.P. et al, 1991) L.P. et al, 1991)..
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5-LC,19-23 June 2005,
Vienna Austria

3. The method of source iterations is used to solve the system of
multiple-group grid transport equations numerically. The
following methods are used to accelerate the iterative process
convergence:

• FCA method for the category of time-independent linear
multiple-group problems of  calculating the critical parameter
Keff (Evdokimov V.V. et al, 1994), (Evdokimov  et al, 1996),
(Moskvin A.N. et al, 1996);

• KM method for the category of time-dependent nonlinear
multiple-group problems of radiation transport (Fedotova L.P.
et al, 1991).
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5-LC,19-23 June 2005,
Vienna Austria

Finite-difference schemes
used to approximate 2D
transport equations using
non-orthogonal space grids
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5-LC,19-23 June 2005,
Vienna Austria

• in time: implicit scheme with weighting multipliers;

• in angular variables: method of discrete ordinates (Sn-quadratures);

• in space: using the extended template for non-orthogonal space grids

The extended template scheme features:
•  the scheme is conservative;
•  convergence to the transport equation
solution with the second order of accuracy
using non-orthogonal space grids;
• the scheme complies with  the diffusion limit
condition in  optically dense media;
•  it uses DSn-method quadratures to
approximate the transport  in angular variables.
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5-LC,19-23 June 2005,
Vienna Austria

The scheme is built using the grid function values in a
cell, on sides and at vertexes of a quadrangular cell .
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5-LC,19-23 June 2005,
Vienna Austria

The system of grid equations includes the following: 

1. Grid equations for particle balance in the grid cells: 
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3. Additional space relations between the values of the desired function in 
a cell, on sides and at nodes of a cell. The number of relations in the scheme 
considered depends on the number of illuminated (exposed to particles) 
quadrangular cell’s sides. Here the following three variants shown below in Fig.5 
are possible depending on the values of mqm ,, !µ

.  

         a)                                             b)                                             c)  

                        Fig.  5 Examples of a cell exposure to particles (i llumination)  

The following additional correlations correspond to the three illumination 

variants in the extended - template scheme:  
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One-group time-independent transport
equation specified in a cylinder with
dimensions 0<R<1, 0<Z<2. Full cross-
section α and multiplication coefficient β
are α=1.34 and β=2.25, respectively.
The boundary condition is a zero
incoming flow.

Computations were made using an angular grid with 24 particle flight directions.
The problem statement provides for finding the values of the critical parameter λ. The exact
value of this parameter found by convergence computations is λ=0.1474. The table below
gives computation results for the problem obtained using Schemes 1 and 2. There were two
variants of computations using Scheme 1, they differed in the transport equation
approximation in angular variable ϕ. Namely, in the first variant the standard approximation
of the discrete ordinate method was used (Scheme I in the table – DSn), and in the second
one approximation using some modified scheme was used (Scheme 1 in the table – MDSn).

2D test problem
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5-LC,19-23 June 2005,
Vienna Austria

Table 1. The values of parameter  in computations using
scheme 1 and scheme 2 for various spatial grids.

0.1478110.1487930.1520420.161205Sch.2
(DSn)

0.1477950.14871310.15212360.1618866Sch.1
(MDSn)

0.1474150.14736500.14728150.1462831Sch.1
(DSn)

Non-
orthogonal

0.1477560.1487620.152220.162753Sch.2
(DSn)

0.14775630.14876230.15221990.1627532Sch.1
(MDSn)

0.14740120.14741430.14737670.1471177Sch.1
(DSn)

Rectangular

h/8h/4h/2h
Grid

Size of cells (h=0.1cm)
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5-LC,19-23 June 2005,
Vienna Austria

During such scheme construction the solution inside a grid c ell is represented in the form 

of bilinear decomposition in space variable and in angular variable !  : 
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5-LC,19-23 June 2005,
Vienna Austria

The balance equations  for particles in space grid cells and the
corresponding moment equations are used to find the unknown
coefficients of the expansion in series.

1. Moment difference equation in angular variable ϕ.
2. Moment difference equations in space variables. Similarly to the

case described above, the simplified expansion in series
containing only the dependences on space bilinear variables is
used to construct such equation:
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5-LC,19-23 June 2005,
Vienna Austria

Statement of the test problem.
The linear time-independent particle transport problem (1)-(3) is considered in axially

symmetric region {0≤R≤1, 0≤Z≤2}. The source and the equation coefficients are taken as Q=1, α=1, β
=1. The incoming flow equal to zero is specified for the boundaries parallel to R-axis (on the bases of
cylinder) and the boundary condition “mirror reflection” is specified for the boundary parallel to Z-
axis.

A series of computations was carried out using grids concentrating in angular and spatial
variables:[10x10, DS6]; [20x20, DS12]; [40x40, DS24].
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Fig.8. The profile of solution along the central
column
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5-LC,19-23 June 2005,
Vienna Austria

The idea of the method is that in phase space, where the problem
solution is to be found, some region (which is not a simply connected
one, in general) is separated, where the original grid cells are refined
to obtain cells of smaller sizes. (Shagaliev, 2004), (Shagaliev et al.,
2004). Such refinement of the grid cells can be made in space
variables, angular variables and energy variable.

The adaptive method of refined
grids in phase space

Fig. 9. Examples of refinement in space variables
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5-LC,19-23 June 2005,
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The transport equation approximation on non-orthogonal spatial
grids using the adaptively refined grids entails the problem of
preservation of the principal properties of the scheme used for
finding the numerical solution to the transport equation on the
reference grid, such as the transport equation approximation within
a single computational cell, conservatism of the scheme, a
possibility to solve the grid transport equation with the point-to-
point computation algorithm, a possibility to use acceleration
algorithms, and some others. An important feature of the developed
adaptive method of refined grids is that it ensures the solution to
the above problem.
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5-LC,19-23 June 2005,
Vienna Austria

Physical region 1

Physical region 2

Z

R

0 5

1
1.2

Benchmark problem. A rectangular region in 2D axially symmetric geometry is
considered. The region is presented in Fig. 10. The computational domain is
composed of two physical regions: Region 1 is a dense casing
{0 ≤ Z ≤ 5; 1 ≤ R ≤ 1.2};
Region 2 is a transparent region {0 ≤ Z ≤ 5; 0 ≤ R ≤ 1}, E = 0.81 T, χa= A/T3, where
A = 50.89 in region 1 and A = 0.1374 in region 2.

Fig. 10. The system geometry in the 2D benchmark problem
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5-LC,19-23 June 2005,
Vienna Austria Fig. 11. Material temperature profile

along line Z = 2 at time 0.01 in the 2D
benchmark problem for different
reference grids:
          —— – solution on the base grid 40×200;
           – – – – calculation 20×100;
           ⋅ ⋅ ⋅ ⋅ ⋅ – calculation 10×50;
           – – – – calculation 10(4)×50(4);
           —— – calculation 10(8)×50(8)
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 The flow density bottom-to-top distribution along
boundaryr=1.0 for various options of the adaptive grid

construction
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 The flow density distribution from left to right along
boundary z=2.0 for various options of the adaptive grid

construction
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The radiation temperature distribution in computations
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5-LC,19-23 June 2005,
Vienna Austria

Finding the numerical solutions to various application problem
classes requires methods for acceleration
 of convergence of iterations in source (in the right-hand side of the
transport equation) to ensure the computation efficiency.
For computations on linear time-independent problems of critical
parameter calculation we have developed and are successfully
using a flow consistent acceleration method (FCA method).
The brief description of the method and some
results of its numerical studies are presented below.

Algorithms for iterative process
convergence acceleration in

complex SATURN
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5-LC,19-23 June 2005,
Vienna Austria FCA method (Flow Consistent

Method)
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5-LC,19-23 June 2005,
Vienna Austria

The FCA method is constructed using the integral moment equations, namely, the
equations for zero and first moments of function N of the solution to the initial transport
equation that include the compensating sources of the simple iteration.
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Numerical studies of the FCA method
for the iterative process convergence

acceleration
Region {0<x<1.5, 0<y<1.5, 0<z<1.5}

!
2D 3D

N/A FCA N/A FCA
10. 9. 81 7 116 12
10. 9.9 331 7 300 13
10. 9.99 463 7 361 13
10. 10. 482 7 370 13

Results of the computations for reactor SNR-300

Method Number of iterations

Kellog method 143

Direct method 141

Method of inverse iteration 112

Method of inverse iteration + FCA 20
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Vienna Austria

Results of the computations for
the RBMK reactor channel

Method Number of iterations

Kellog method 229

Direct method 412

Source iteration method 555

Source iteration method + FCA 42

Source iteration method + FCA +
Chebyshev method

24

Homogeneous sphere R=10

α=β Number of iterations
SI DSA method FCA method

1. 221 8 6
2. 597 8 6
4. 1627 9 6
8. 3927 8 6

12. 6003 12 6
16. 7658 24 9
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5-LC,19-23 June 2005,
Vienna Austria The KM method is a two-step

iterative method.
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    Mention some features of the group correction equations of
KM-method step 2:

1. The KM method is a conservative iterative method, with the
two major laws of conservation characteristic of the
transport equation, i.e. the law of conservation relative to
the particle transport and that relative to the medium-
radiation energy exchange, being simultaneously satisfied
at each iterative process step.

2. The KM-method step 2 group equations are of the same
form as the original group transport equations, which
allows the same difference methods as those for the
governing equations to be used for their grid
approximation.

3. The cost-efficient “point-to-point computation” method can
be extended to the numerical solution of the KM-method
step 2 correction difference group equation system.
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I step: predictor – like in the KM method
II step: corrector – iterative:
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KM3 method
Benchmark problem «Tube»:

Region 2 (10×100)

Region 1 (10×100)

Z

R

0
10

1
1.2

The number of iterations in region 2 (NIterν=1, l=const=0.5)

Step
No.

sec sec sec

SI KM KM3 SI KM KM3 SI KM KM3

1 19108 14 14 28696 26 26 26454 35 35

5 3332 24 20 6363 121 88 7960 238 174

10 1559 27 20 8477 101 75 9146 179 135

t, sec 2880 61 47 7020 233 184 8580 435 347
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Techniques and algorithms
for parallelizing 2D and 3D

problems
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The development of highly efficient algorithms for parallelization of the problem class
under discussion is an involved methodological problem. There are a number of
objective reasons for this, among which the following should be primarily mentioned.

1. As it is known, implicit schemes are mainly used to find the numerical solution to
the transport problem, hence, spatial grid cell computations should be performed
in some strictly determined sequence. When using non-orthogonal spatial time-
varying grids, the sequence of the cell computation may be different at different
time steps. In other words, in parallelization of this problem class in space
variables it is very hard, in contrast to the problems solved using explicit numerical
methods, to ensure a simultaneous uniform loading of all the processor elements
used.

2. In numerical solution of nonlinear transport equations the costs of the transport
equation coefficient computations are significantly different at various space
points, this leads to an additional disbalance of the parallel computations.

3. In numerical solution of the problem class under discussion a number of other
physical processes must be simulated along with the transport process in separate
sub-regions, this also significantly influences the parallel computation balance.

Parallel techniques
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As it was already mentioned above, numerical simulation of many
various categories of multidimensional time-dependent transport
problems leads to a heavy computational burden. We developed
effective methods of fine-grain parallelization oriented to a general
case of using non-orthogonal spatial grids to the problems above in
2D and 3D space approximations on multiprocessor systems
(Alekseyev et al., 2001) (Alekseyev et al., 1993) (Alekseyev et al., 1996).

These parallelization algorithms are to be presented at the
conference in a separate report. Here, I only demonstrate their
efficiency by the example of one 3D test problem.  The problem
parameters are: 8 energy groups, 96 particle flight directions (S8),
250000 three-dimensional spatial cells. The efficiency is estimated
using the method of increase.  The problem size remains unchanged
on each processor.
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The efficiency of the combined parallelization algorithm for solving
the 2D benchmark (28 groups,   96 particle flight  directions,

250000 spatial cells).
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The above-discussed numerical methods and

algorithms are extensively used at present for

computation of various application problems in

multidimensional geometries.

To demonstrate the capabilities of the methods

developed,  below  are some results of the

computations for 2D coupled time-dependent problems

that describe experiments on laser facility ISKRA-5 .

Some examples of
computations for
2D application problems
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• Three-temperature hydrodynamics 
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•  Ì ulti-group spectral radiation transport 
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 • Energy transfer by electrons and ions  
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• Energy exchange between ions and electrons 
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• Alpha particle energy transfer in space in the multi-group 
diffusion approximation 
• Thermonuclear reaction kinetics 
• Ionization and recombination kinetics    

• Laser energy import into target 
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Fig. 16 presents the “illuminator”
target
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m250
200
r4

N
R4 2

0
2
0 µ

ππ
λ ≈≅=

λ

θ

ϕ

sintpo3020 −→λ

sintpo15m40
2

→≅ µ
π
λ

Minimum number of points on the target surface   250 × 250 ~  6 ⋅104 

Minimum number of points in radius  200 
Minimum number of groups in photon energy and _ - p a r t i c l e  e n e r g y   2 0  

N u m b e r  o f  p a r t i c l e  f l i g h t  d i r e c t i o n s  i n  p h a s e  s p a c e  1 0 0 0  

N u m b e r  o f  a r i t h m e t i c  o p e r a t i o n s  r e q u i r e d  f o r  o n e  p h a s e  s p a c e  p o i n t  

c o m p u t a t i o n  a t  o n e  t i m e s t e p  

2⋅103 

Total number of arithmetic operations over all points that are required 
for computation of one timestep  

4.4 ⋅1014 

Number of timesteps  104 

Required performance of the super -computer for computation of the 
thermonuclear target implosion stage  

~ 10 Tflops  
(costs: ~100 h per 

computation ) 
Required performance of the super -computer for full -scale computations 
of laser thermonuclear facility dynamics  

 
> 100 Tflops  

 

Simulations of multibeam-laser
irradiated target dynamics
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Spherical chamber of ISKRA-5 

facility
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